The boundary length and point spectrum enumeration of partial chord diagrams using cut and join recursion

نویسندگان

  • Jorgen Ellegaard Andersen
  • Hiroyuki Fuji
  • Robert C. Penner
  • Christian M. Reidys
چکیده

We introduce the boundary length and point spectrum, as a joint generalization of the boundary length spectrum and boundary point spectrum in [1]. We establish by cut-and-join methods that the number of partial chord diagrams filtered by the boundary length and point spectrum satisfies a recursion relation, which combined with an initial condition determines these numbers uniquely. This recursion relation is equivalent to a second order, non-linear, algebraic partial differential equation for the generating function of the numbers of partial chord diagrams filtered by the boundary length and point spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial chord diagrams and matrix models

In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length spectrum. Furthermore, we consider the boundary length and point spectrum that unifies the last two typ...

متن کامل

Enumeration of chord diagrams via topological recursion and quantum curve techniques

In this paper we consider the enumeration of orientable and nonorientable chord diagrams. We show that this enumeration is encoded in appropriate expectation values of the β-deformed Gaussian and RNA matrix models. We evaluate these expectation values by means of the β-deformed topological recursion, and – independently – using properties of quantum curves. We show that both these methods provi...

متن کامل

Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces

We introduce and study the Hermitian matrix model with potential V(x)=x^2/2-stx/(1-tx), which enumerates the number of linear chord diagrams of fixed genus with specified numbers of backbones generated by s and chords generated by t. For the one-cut solution, the partition function, correlators and free energies are convergent for small t and all s as a perturbation of the Gaussian potential, w...

متن کامل

TAC: A Topology-Aware Chord-based Peer-to-Peer Network

Among structured Peer-to-Peer systems, Chord has a general popularity due to its salient features like simplicity, high scalability, small path length with respect to network size, and flexibility on node join and departure. However, Chord doesn’t take into account the topology of underlying physical network when a new node is being added to the system, thus resulting in high routing late...

متن کامل

Analytic Combinatorics of Chord Diagrams Analytic Combinatorics of Chord Diagrams Combinatoire Analytique Des Diagrammes De Cordes Analytic Combinatorics of Chord Diagrams

In this paper we study the enumeration of diagrams of n chords joining 2n points on a circle in disjoint pairs. We establish limit laws for the following three parameters: number of components, size of the largest component, and number of crossings. We also nd exact formulas for the moments of the distribution of number of components and number of crossings. Key-words: Analytic combinatorics, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016